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The Bergman Kernel
If Q c C"is a domain, the space
A2(Q) = {f € L3(Q) : fis holomorphic on Q}

is a closed subspace of L2(Q), and the Bergman projection for Q is the
orthogonal projection

B = Bq: [2(Q) — A%(Q).

The Berman kernel is the Schwartz kernel of this operator B, and is in
fact a function K = Kq : 2 x Q2 — C so that

fe [3(Q) = Bq[f](2) /f w)Kaq(z, w) dw

Let
K(z) = Ka(z) .= Ka(z,2)

denote the values of the Bergman kernel on the diagonal.
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Elementary properties of the Bergman kernel Kq:

(1) For each fixed w € Q, the function z — K(z, w) belongs to A%(Q),
and
K(z,w) = K(w, 2).

(2) If {pn} is any complete orthonormal basis of A%(Q), then

Ka(z,w) = Z en(Z)en(w)

with uniform convergence on compact subsets of 2 x Q.
(3) If F: Q4 — Qo is a biholomorphic mapping, then

Ko, (z,w) = JF(2) Ko, (F(z), F(w)) JF(w),

where JF is the complex Jacobian determinant of F.
(4) fQ=Q4 x Qo c C" x C™, then

Ka((z1, 22), (Wi, W2)) = Ko, (21, w1) Ka,(22, Wa).
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Elementary properties of Kq, the Bergman kernel on the diagonal:

(1) The values of K on the diagonal solve an extremal problem:

Ka(2) = Ka(z,2) = sup {[f(2) 2 | f € A(Q), |Ifl| = 1}.

(2) If Q4 C Qo, and z € Q4 then

Ka,(2) < Ka, (2).
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Examples

A If By ={(z,...,2n) € C"| 3[L; |z < 1} is the unit ball, the
Bergman kernel is

n! _n—
KBn(Z> W) = ﬁ (1 - <Z> W>) n 17
n!
—n

where (z,w) = >, zWw}, and Kg,(2) = — (1 — |2[*)~"".
T
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Examples

A If By ={(z,...,2n) € C"| 3[L; |z < 1} is the unit ball, the
Bergman kernel is

Ko(2.w) = 75 (1 = (2, w) ",

n!
where (z,w) = Y, zwj, and Kp,(2) = (1= |z|?)~"

B. If Ap={(21,...,2n) € C"| sup |z]| < 1} is the unit polydisk, the
1<j<n

Bergman kernel is

n
Ka,(z,w)=7"" H(1 — szj)’z,
j=1

n
and Ka,(2) == "] J(1 - 1z%) 2.
j=1
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C. Let
A(r,R)={cecC|0<r<|(|<R}
be the annulus in C with inner and outer radii r and R. Suppose
that 4r < 1 < . Then there is a constant C independent of r and

R so that

1 PR
C A2 log ()]
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Pt —s+——r | <Karm(1)<C
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A. Nagel (U.W. Madison) 7/43



C. Let
A(r,R)={cecC|0<r<|(|<R}

be the annulus in C with inner and outer radii r and R. Suppose
that 4r < 1 < . Then there is a constant C independent of r and
R so that

1
C

PRI
R? " log (%)

To see where these estimates come from, consider the three functions

PRSI
A2 log (7) ]

] <Karpr(1)<C

O=rc?  60=4 h(o[log(”)};cﬁ

7
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Model monomial domains

We would like to obtain uniform estimates for the Bergman kernel in
domains of the form

d
Q= {(27 Zpi1) € cr Re[zp1] > Z |Fj(Z1,...,Zn)‘2}
=

where {Fy, ..., F4} are polynomials or entire functions. However, we
are only able to handle the case in which each F; is a monomial.

Let P = {p+,...,pq} C N" be a d-tuple of vectors with non-negative
integer entries: p; = (p;1,.-.,pP;n). Each p; gives a monomial

Pj1

Foi(2) = 2P = z, -z,

A model monomial domain is then a domain of the form
d
Qp = {(Z, Znit) € cntl Re[zp.1] > Z |ij|2}‘
j=1
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PROBLEM 1: Let Qp be a model monomial domain. Obtain uniform
estimates for Kq,, the Bergman kernel on the diagonal of 2p, near the
boundary 0Q2p.

If a€ C"and ¢ > 0, the point (a,d + Z]‘-; |aPi|?) € Qp. We want
estimates for
d d
Kp(a6) = Kp((a0+ Y [aPP),(a0+ ) |aP?)
j=1 j=1

which are uniform in the base point ac C” as § \, 0.
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Some background.

Suppose Q is a pseudo-convex domain with smooth boundary. For
z € Q,let§(z) = infy¢q |z — w| be the distance to the boundary.

(a) L. Hérmander (1965) showed that if 2 c C" is strictly
pseudo-convex, then

M 0 Ki2) = )

where L(¢) is the product of the (n — 1) eigenvalues of the Levi
form at ¢. In particular, K(z) ~ §(z)="".

(b) C. Feffereman (1974) and L. Boutet de Monvel & J. Sjéstrand

(1976) obtained a complete asymptotic expansion of K(z, w) near

a boundary point ¢ € Q of a strictly pseudo-convex domain.
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(c) D. Catlin (1989) obtained estimates for Kq(z, z) if Q@ c C? is
pseudo-convex of finite type.

(d) J. McNeal (1989), and N., J. Rosay, E.M. Stein, & S. Wainger
(1989) obtained estimates for Ko (z, w) if Q ¢ C? is pseudo-convex
of finite type.

(e) J. McNeal (1991) obtained estimates for Kqo(z,w) if @ C C"is a
decoupled domain of finite type, and (1994) if Q c C" is a convex
domain of finite type.

(f) P. Charpentier & Y. Dupain (2006) obtained estimates for Kq(z, w)
if Q ¢ C"is a locally diagonalizable domain and (2008) if Q is
geometrically separated.

In all these cases Kq(z,z) ~ 6~ for some o > 0.
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Obtaining estimates for Kq(z) from above:

@ Let ¢ € 99, let iy be the outward unit normal to 9 at ¢, and let
z = ( — éni; be the point at ‘height’ 6 above (. (Thus §(z) = 4.)

@ Find a polydisk A(z; r) with center at z with radius a small multiple
of 4 in the complex direction spanned by 7., and poly-radii
“as large as possible” in the (n — 1) complex directions orthogonal
to i so that A(z;r) C Q.

e If h € A2(Q), the mean value property of h gives

M) < 5 1 a1 V(W)

1

< Al € e [hll 2,
1Az, 7)) =M= Ia@z ] E®

@ The extremal characterization of (z) then gives

Ka(z) < |A(z,r)]
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Obtaining estimates of Kq(z) from below:

@ Construct h € A%(Q) with ||h|| = 1 which are as large as possible
at z.

@ In the case of model domains of the form

d
Q= {(z,zp11) €C™" : Relzat] > Y |F(2)[?}
j=1
this can sometimes be done by considering functions of the form
F(2,2011) = 9(2)(6 + Znp1) ™V

where g is a suitable holomorphic function of n-variables.
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The Herbort Example (1983).

Let
P(z1,22) = |1[® + |21 22| + | 2°

and let
Q; = {(21,22723) € C° : Re[z] > P(z1,zz)}.

Let a= (ay,an) € C2. If ay # 0 and a, # 0, the domain Q; is strictly
pseudo-convex at the boundary point (a1, az, P(ar, a)). It follows from
Hérmander’s 1965 result that

lim &% P = .
5@)6 Ka.(ai,az,6 + P(ai,a2)) = c(a,a) # 0
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The Herbort Example (1983).

Let
P(z1,22) = |1[® + |21 22| + | 2°

and let
Q; = {(21,22723) € C° : Re[z] > P(z1,zz)}.

Let a= (ay,an) € C2. If ay # 0 and a, # 0, the domain Q; is strictly
pseudo-convex at the boundary point (a1, az, P(ar, a)). It follows from
Hérmander’s 1965 result that

lim &% P = :
lim, 6" Ka,(a1,a2,0 + P(ai, a2)) = c(ar, a2) # 0
However if (ay, ax) = (0, 0), Herbort (1983) showed that

Ko, (0,0,8) ~ 62 [log (%)} -
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Sketch of the proof of the bound from above:

1 1
Qy % Qp = {\z1|6 +z1222 + |22]® < 75} x {yz3 — 5| < 75} c Q.

2 2

The second factor Qs is a disk and contributes a factor 2. Thus it
suffices to estimate the Bergman kernel at (0, 0) of the domain

’
{(21,22) eC?: |7+ |z122 + |2]° < 56}.

If we put

1 1 1
Q:(5) := {(21,22) eC?: |z < 65%, 121 25| < 65%, 125 < 65%},

then Q(d) C 4, and it suffices to estimates the Bergman kernel of
Q4(0) at (0,0).
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If we consider polydisks centered at (0,0) and contained in this
domain, the maximum volume is on the order of §, giving an estimate

Kq,(0,0,6) 672071 =6"%

However, the domain Q. () is invariant under rotation about each axis
and it follows that if h is holomorphic on Q;(6),

h(0,0) = [Q4(5)| " / h(w) dV(w).

Q24(9)

Since ]
2:(9)] ~ dlog ().

we can use this larger domain to obtain Herbort’s better estimate

Ka,(0.0.5) ~ 5[ log (%)r
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More precise version of Problem 1:

(1a) What is the correct uniform estimate for the diagonal Bergman
kernel Kq, (z) which:

(i) gives Herbort’s estimate of 6—3[Iog(6—‘)]_1 at height § above the
point (0, 0);

(i) gives the strictly pseudo-convex estimate §—* above nearby strictly
pseudo-convex points?

(1b) Is there a geometric interpretation of such estimates?

Herbort’s example suggests that instead of imbedding polydisks, one
should try to imbed larger domains which are invariant under rotation
(Reinhardt domains). C.H. Tiao (1999) obtained results the Bergman
kernel on such domains, but needed to impose rather stringent
geometric hypotheses.
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In order to obtain uniform estimates, we proceed through a series of
steps:

(a) reduction to the study of monomial polyhedrons in C”;

(b) reduction to inverse images under proper monomial mapping of
monomial Reinhardt domains.

We return to the question of finding a geometric interpretation at the
end.

A. Nagel (U.W. Madison)
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Reduction to ‘monomial polyhedrons’.

Let
d
Qp = {Re[2n+1] >y \pr|2}-
j=1
Leta=(ay,...,an) € C" and assume for simplicity that a; - - - a, # 0.
Step 1:

There is a biholomorphic mapping with Jacobian identically 1 which
carries the domain Qp to

d
Qpa= {(z, Zni1) € cntt . Re[zp.1] > Z |Zp/ _ apj|2}
j=1

and carries the point (a,d + Z;; |aPi|?) to the point (&, §). Thus it
suffices to estimate the Bergman kernel for Qp 5 at (a, 6).
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J
Qp.a= { Z,Zpi1) Z|Zp’ aPi|? < *, |Znt1 — 6] < E}’

then ~
(a,0) € QpaC Qpa.

Thus for upper bounds, it suffices to estimate the Bergman kernel for
the domain Qp 4 at (a, ¢).
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Step 3:

d

~ . , 4] 4]

Qpa= {(z,zn+1) : E 2P — aPif? < 2’ |Znt1 — 0] < E}’
=

is a Cartesian product with one factor a disk. Thus it suffices to
understand the Bergman kernel at the point a € C" for the domain

d
Up.a(8) = {z eC: ) |zP - aPiP < 5}.
=
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Step 4:

Let
Vp.a(d) = {z eC": sup |zP —aPi? < 5}.
1<j<d
Then
a € Up,a(6) C Vp a(d) C Up a(dd),

and so up to fixed multiples of 4, it suffices to understand the Bergman
kernel for the domain Vp 4(8) C C" at the point a € C".
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Step 5:
Make the biholomorphic mapping

V4 Z
F(zi,...,2n) = (a—1,...,a—">.
n

Then Vp 4(0) is the image under this mapping of the domain

Wp a6 = {W eC": |wPi -1 < \/g(apf')_1, 1<j< d}.
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Proposition
Let

d
Qp = {(2,2041) € C™ | Re[z41] > P(2) = Y |22},
=1

Let Kp(z,2z,.1) be the Bergman kernel on the diagonal, and let
a=(ay,...,an) € C" with each a; # 0. Then
n
Kp(a,8+ P() < Co2[ T] &Ky (1)
i=1

where C is independent of a and §, and

Wpas={weC: |wPi—1] < V5(a") ", 1 <j<d}.
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As the base point a= (ay, ..., an) € C" varies, the quantities
o =vo@) ™, 1<j<d,

vary. Thus if § = (61,...,04) € (1,00)? and P = {p4,...,ps} C Z",
consider the complex “monomial polyhedron” or “monomial ball”

Wp(3:1) = Wp(d1, ..., 041) = {we@”

WP —1] < g, 1 gjgd}.
More generally, for any a = (ay,...,an) € C", consider

Wp(5:8) = Wp(d1,...,0q:8) = {wec”

wP—aPi| <, 1<j< d}.

Note that if Wp(4; @) is not connected, Wi (6; a) denotes the
connected component containing the point a.

A. Nagel (U.W. Madison) 25/43



Problem 2:
Estimate the Bergman kernel of the monomial polyhedron

wp(é;a):{wec" wPi — aPi| < g, 1 gjgd}

at the diagonal point (a, a), with estimates that are uniform in the

parameters § = {dy,...,04} and the point a = (ay, ..., an) € C". Note
that:
@ the parameters {44, ...,04} can be either large or small;

@ by scaling, it is easy to reduce to the case where each of the
coordinates {ay, ..., an} is equal to zero or one.
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Return to Herbort’'s example.

If P = {(8,0), (1,1), (0,3)} and 6 = (64, 02, 3), then Wip(§; 1) is the
domain

{(w1,w2)e(C2 (W3 — 1] < by, |wywp — 1] < 0, WS — 1| <63}.

We consider two special but typical cases.
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Case 1: d3 < &1 < 62 < 135-

Recall that Wp(0; 1) is the component containing (1, 1) of the set
{(w1,w2):\W$—1y<51,\w1w2—1\<52,ng—1|<53}.
Put
Reig = { (Wi, wo) | [wy — 1] < 1081, |wywe — 1] < 1085},
RSmaII:{(W1aW2)||W1_1|<%51, \W1W2—1|<%52}~

It is then not hard to check that

Rsmal C Wp(8;1) C Rag.
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Make the biholomorphic change of coordinates
F(wy, wo) = (wy, wywp) = (U, Up).

The Jacobian of this change of variables is uniformly bounded and
bounded away from zero on Rpgjg since wy and w, are close to 1. The
images of Rgig and Rsman are polydisks with radii comparable to d+
and &,. Thus, after a change of variables, the region Wp(4; a) is
essentially a polydisk centered at (1, 1) with radii 6y and d,. It follows
that the size of the Bergman kernel for Wp(4; @) on the diagonal at the
point (1, 1) is on the order of

(6102) 2.
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Case 2: &y > 1000, 53 > 1000, and 6 < 1.
Again recall that Wp(9; 1) is the component containing (1, 1) of the set

{(W1,W2) : |W$—1’<51, ‘W1W2—1‘ <(52,’WS—1| <53}.

Note that if (wy, ws) € Wp(6; 1), then

i | = (wiwg| _ 1+ (wiwe - )| 1 |wiwe — 1]
|wa| |wa| |wa|
1 1 1
> - >0
2we|  2wB 1415 4
This time, put

1
RBig:{(W1,W2) : ﬁ <|W1|<105 |W1W2—1|<1052,},

1 1 1 1
RSmaIIZ{(WhWZ)“O(S 3<\W1|<10537 W1W2—1!<1052,}-

It is then not hard to check that Rgma € Wp(d;1) C Raig-
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Again make the biholomorphic change of coordinates

F(wy, wo) = (wy, wywp) = (U, Up).
The Jacobian of this change of variables is wy, which equals 1 at the
point (1,1).

This time the images of Rgig and Rsmai are the Cartesian product of a
disk centered at 1 of radius comparable to §,, with an annulus whose

l . . .
outer radius is comparable to 6; and whose inner radius is comparable
1
3
to 45 °.

It follows that in this case the size of the Bergman kernel for Wp(5; 1)
on the diagonal at the point (1, 1) is again on the order of

552 [ log(d4 53)} -
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Explicit estimates in Herbort-type examples.

Consider the following generalization of Herbort’s example:

Qi = {(21,22, 23) : Relzs] > |z41[*" + |21 20 + | 22"},

and consider the point
z=(a,b,d+|a™ +|ab® + |b[*" + i)

which is at height § above the boundary.
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If Kq is the Bergman kernel for Q: on the diagonal, if (a, b) € C? with
lal? + bl <1, and ifz = (a,b,6 + |a]*™ + |ab[? + |b[>" + it), then
( ‘a|2m . 1
54 if dzm < al and |b| < |al,
o if oz < |bland|al < |b],
&l o2,
2 2 g
Ko, (2) ~ %[%Jr%*'%] if 4 |bl < 82,
m on log* (52m+52n> 1
0 63 < |ab),
&l 5 d2n,
1 [laf? | b 1 - 1
5 [57% + o u Iog*(%)} i bl 5 52n1’
\ lab| < 2.
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Return to the general case.
A domain/ ¢ C"is a Reinhardt domain if
(z4,....,zn)eUd = (%z,...,e%z)eu.
A domain Ro(77) is a rational, monomial-type Reinhardt domain if
Q={0q1,...,9s} €Q", dk = (k.15 -, Gk.n);
ﬁ = (771>"'7773) € (O,OO)S;

and

n

Ro(i) = Ra(n1, .- ns) = {z€ C": [[1z]% <nk, 1<k <s}.
j=1

Let0 <e1 <1 <ep. Adomain Q C C"is (eq,ep)-approximated by the
monomial-type Reinhardt domain Ro(7) if

RQ(617]1,...,61773) cQcC RQ(62771,...,62773).
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Theorem

LetP = {py,...,pq} C NY be a spanning set of vectors, and put

Wp(5;1) = {we@”

WP — 1] <, 1 gjgd}
be a complex monomial polyhedron. There there exists

(a) a monomial mapping ® = (my,...,mp) : C" — C" (i.e. each
component function m; is a monomial in zy, . . ., zp);

(b) a monomial-type Reinhardt domain Ro(77) C C"

(c) absolute constants 0 < e1 < 1 < eo,

so that ®(Wp(6,1)) is (€1, €2)-approximated by Ro(7); i.e.

Ro(e1i) € ®(Wp(8,1)) C Ro(ezi).
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The point of this result is the following:

@ Let z € Ro(e17) C Ro(e27]). We show that there is a constant
C(eq, €2) so that

Kro(em)(2) < Krg(en)(2) < Clers €2) Krg(en) (2)-
@ It follows that
IC'RQ(GQT_])(Z) < IC¢ (WP(S71)) (Z) < C(61 ) 62) ,CRQ(Egﬁ)(Z)‘
@ Thus we obtain diagonal estimates for the Bergman kernel for

¢(W7>(5, 1)) in terms of diagonal estimates for rational,
monomial-type Reinhardt domains.

A. Nagel (U.W. Madison) 36/43



This leads to two further problems:

(Problem 2) Understand the relationship between the Bergman kernel
of a domain W and the Bergman kernel of its image
® (W) where ¢ is a proper holomorphic monomial

mapping.

(Problem 3) Obtain estimates for g when Q is a rational,
monomial-type Reinhardt domain.

The solution of Problem 2 involves an orthogonal decomposition
AZ(W) = B A%(W) into closed subspaces parameterized by
characters x of a finite abelian group G. Each Hilbert space Ai(W) is
then isometric with the space A2(®(W),w,(w)dV(w)) where w, is a
weight function on (V). This allows us to estimate the Bergman
kernel for W in terms of a sum of weighted Bergman kernels for &(W).

In the remainder of the talk, we focus on Problem 3.
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Let R c C" be a Reinhardt domain, and put

|R|:{(|Z1|,...,|zn|) : (Z1,...,Zn)€7€};
IR ={(x1,...,xa) € [R| : #0, 1 <j<nj}
Sr={(t,....tn) eR" : (e",... €M) € [R*|} =log (|R*|).

Foreachm = (my,...,m,) € Z", let Fn(z) = 2™ =z - - - Z7™.

@ R is pseudo-convex if and only if ¥ is convex.

@ If h is holomorphic on R, then h(z) = 3", .z» Cm 2™, with absolute
and uniform convergence on compact subsets of R.

@ The collection of functions {Fm(z) = 2™ : Fm € A%(R)} is a
complete orthogonal basis for A%(R).

@ The Bergman kernel for R is given by

Fin(2)Fm(w) zmwm
Kr(z, w) = e me = .
W=D SE e = 2 R

meZn meZzn
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In the last formula for the Bergman kernel Kz (z, w), we actually sum
only over those m for which ||Fm||;2 < co. This set can be
characterized as follows. For each 0 #y € R”, let

M(y) = sup (t.y),

teir

M) ={y eR" : M(y) < +oo}.

Proposition
(a) The setl(X) is a convex cone in R".

(0) [[Fml[2(r) < oo if and only if m belongs to the interior of T (X).

Thus

T Fn(2)Fm(w) _ T zmw™

|| Fenl 72

Kr(z,w) = .
| Fenl 172

meZ"Nint(M(X)) meZmnint(M(x))
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We introduce the following notation:
IfO#yeTl(X),let

Ny ={xeR": (x,y) =sup(s,y)}
sex

be the supporting hyperplane to X which is perpendicular to y.

Fort € ¥, let py(t) be the perpendicular distance from t to My. Thus

py(t) = |y~ sup(s — t,y).

sex

For m € I'(X), let V(m) denote the volume of the ‘cap’ C(m) of X of
thickness |m|~" in the direction of m:

Cim)={teX : pm(t) <|m "} ={teX :sup(s—tm) <1}
sex
V(m) = ’{tez : pm(t) < |m\*1}‘ = ’{tez . sup(s —t,m) < 1}‘
sex
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Proposition
Let R be a log-convex Reinhardt domain, and let ¥ = log(|R*|). Let

z= (et . . . ety e R

so thatx = (x1,...,Xn) € X. Then

Kr(z)= o200 3> g2mm(0] / e2mlom(s) ds]*‘
meZmnint(r (<)) z

~ e 2(1.%) Z g 2Imlem(X) \/(m)~1 (1)
meZ"Nint(r' (X))

where 1 = (1,...,1) € R" and the constants implied by the symbol
“~” are independent of R and z
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Note that if m € Z" nint(I' (X)), then

Imjpm(X) <1 <= sup(s—x,m) <1,
scy

which means that x belongs to the cap C(m).
Recall that if T ¢ R”, the polar set of T is
T ={yeR": supity) <1}.
teT

Thus if x € X, then
IMipm(x) <1 = me ()"

where
Yx=rX—{x}={t—-x:tekx}

We show that the main contribution to the series in (1) comes from the
setof m € Z" Nnint(M(X)) for which |m|pm(x) < 1.
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Theorem
Let R be a rational monomial-type Reinhardt domain, and let

z= (et  gntiin)c R,
Let¥ =log(|R]), so thatx = (xy,...,Xp) € ¥, and let
V(x) =inf{|V(m)| : m € Z"Nin{(F(X)), x € C(m)}.
Then

Kr(z) = 20 V(m)~'

m: pm(x)<|m| 1

~ @ 2N (14 (2] ) [V T
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